假分数乘法公式

a b × c d = a × c b × d

有关假分数乘法的更多信息

技巧

1. 在进行乘法运算之前,先消除分子和分母之间的共同因子。
2. 同时,还要消除一个分数的分子和另一个分数的分母之间的共同因子,以简化计算。
3. 确保结果始终小于两个分数,因为结果表示分数的分数。

规则

1. 分子只能与分子相乘,分母只能与分母相乘。
2. 两个或多个分数的乘法不需要共同的分母。
3. 如果得到的分数可以简化,则简化它。

练习假分数乘法

示例

例 1: 求出 7/2 × 4/3 的假分数乘法。
解决方案: 将分子和分母相乘,即 7 × 4 = 28 和 2 × 3 = 6
化简为简单形式,即 28/6 = 14/3
7/2 × 4/3 = 14/3 的假分数乘法。

例 2: 求出 10/3 × 6/4 的假分数乘法。
解决方案: 将分子和分母相乘,即 10 × 6 = 60 和 3 × 4 = 12
化简为简单形式,即 60/12 = 5/1
10/3 × 6/4 = 5/1。

示例 3: 求出 16/4 × 8/5 的假分数乘法。
解决方案: 将分子和分母相乘,即 16 × 8 = 128 和 4 × 5 = 20
简化为简单形式,即 128/20 = 32/5
假分数乘法 16/4 × 8/5 = 32/5。

示例 4: 求出 12/5 × 7/6 的假分数乘法。
解决方案: 将分子和分母相乘,即 12 × 7 = 84 和 5 × 6 = 30
化简为简单形式,即 84/30 = 14/5
假分数乘法 12/5 × 7/6 = 14/5。

例 5: 求 18/4 × 10/7 的假分数乘法。
解答: 将分子和分母相乘,即 18 × 10 = 180 和 4 × 7 = 28
化简为简单形式,即 180/28 = 45/7
假分数乘法 18/4 × 10/7 = 45/7。

乘 假分数 计算器 常问问题

什么是假分数?
假分数的分子等于或大于分母,代表等于或大于一的值。
我们如何简化假分数?
简化假分数或上重分数意味着用分子除以分母来找到分数的最小值。
寻找假分数乘法的步骤是什么?
步骤 1:将两个分子相乘。
步骤 2:将两个分母相乘。
步骤 3:简化分数。
您能否提供一些现实生活中经常应用假分数乘法的例子?
假分数乘法通常应用于烹饪、建筑、财务计算、医疗保健和设计等各种领域,用于合并数量。例如,在生产中,A 公司每小时生产 7/5 个小部件,B 公司每小时生产 6/4 个小部件。将它们的生产率相乘,得出当他们一起工作时,每小时的总产量为 21/10 或 2 1/10 个小部件。
Copied!